
Multi-threading for ESO Pipelines

Abstract. The second generation of instruments for ESO's VLT at Paranal Observatory will increase dramatically the volume of raw data per night. This in

turn leads to very high computational needs that can be, up to some level, addressed by existing multi-core, shared-memory computers. To fully utilize these
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turn leads to very high computational needs that can be, up to some level, addressed by existing multi-core, shared-memory computers. To fully utilize these
multi-processor systems we need to implement a programming environment supporting multi-threaded execution of applications. Such parallel execution
needs to be introduced at the level of pipeline recipes as well as within the Common Pipeline Library (CPL)[1] on which all operational VLT pipelines of ESO
are based. We describe our approach to providing such a new, multi-threading pipeline setup and evaluate possible implementation solutions with some
performance measurements.

1. Introduction

ESO currently maintains a number of instrument pipelines for the VLT. They consist of a

number of sequential recipes, which are built on top of a common, thread-unsafe library

(CPL). Also the second generation instrument pipelines, currently in development, are based

on the CPL. They vary significantly with respect to their algorithms.

Initial attempts to parallelize recipe execution have been done by enabling, via batch

4. VIRCAM / VISTA 

VIRCAM is the most demanding pipeline [4] in terms of computational resources at the time

of writing. It is a 16-chip instrument and therefore it offers a great potential for parallelization.

This makes it an excellent testbed to assess the potential of OpenMP.

From a set of 2048 x 2048 flat images, the recipe

vircam_twilight_flat_combine removes any image which

is saturated or underexposed, linearizes the remainingInitial attempts to parallelize recipe execution have been done by enabling, via batch

scheduling, the concurrent execution of independent data reduction processes, showing

limited potential. Therefore the option of multi-threading recipes is considered as well.

Our aim is to enable the implementation of multi-threading recipes on top of a thread-safe

CPL, while still coping with the maintenance of the legacy sequential code of the existing

pipelines. We do not intend to develop a new thread-safe library but rather to modify the CPL

where necessary. For this purpose we have chosen OpenMP [2].

2. CPL

The CPL includes a number of global variables which make the library inherently thread-

unsafe. In some cases, global variables cannot simply be made local. The necessary API

A combined strategy, introducing parallelism a) at the FITS extension level and b) at the

image level, is applied.

At the first level (a) the introduction of the following pragmas is needed:
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is saturated or underexposed, linearizes the remaining

ones, removes the dark current from them, combines

them with rejection and normalizes the result by its

median.

Parallelism at the FITS extension level is the obvious

strategy. However, it is not the most efficient one due to

its lack of data locality (repeated reading of data from

the cache reducing the high-latency access to main

memory).

unsafe. In some cases, global variables cannot simply be made local. The necessary API

modifications would impose an unfeasible amount of code changes in the CPL. This is the

case with the error handling modules.

A solution to this problem is to provide private copies of global variables for each thread. This

is easily enabled using simple OpenMP pragmas:

static cpl_boolean cpl_error_status = CPL_FALSE;

static cpl_boolean cpl_error_read_only = CPL_FALSE;

#pragma omp threadprivate(cpl_error_status, cpl_error_read_only)

This approach implies new semantics for error handling in a multi-threading environment.

At the first level (a) the introduction of the following pragmas is needed:

#pragma omp threadprivate ([global variable list])

#pragma omp parallel for ordered \

private([private variable list]) \

shared([shared variable list]) \

schedule(dynamic) \

num_threads([Nth])

for ( ; ; ) {

/* Code to process each extension */

#pragma omp ordered

save_ext();

}

The ordered construct ensures that the products are appended to the result FITS file in the
3. VISIR

A first candidate for parallelization are the VISIR[3] science recipes, for which an even

number of 256 x 256 (nodding + chopping) images are loaded into memory (512kB RAM

each), normalized with respect to DIT (Detector Integration Time) and pairwise added. The

final step consists of destriping the added images, using an iterative filtering.

Parallelization can be achieved in this case by adding, on top of the loop over the images, a

single pragma of the type:

#pragma omp parallel for private([private variable list]) schedule(static, 2)

for ( ; ; ) {

/* Code for each iteration */

}

The ordered construct ensures that the products are appended to the result FITS file in the

proper order.

At the second level (b) several pragmas of the type already used in VISIR are added on top

of every loop traversing the pixel buffer. In order to avoid false sharing (undesired writing to a

single cache line by more than one thread) at this level, an alternative memory allocator,

assuring cache line alignment, HOARD[5], has been used.

Fig. 3 shows that scalability is rather poor. Images are large; the recipe execution is rather

memory-intensive. The 8 cores available share 2 L2 caches only, while during the sequential

execution, a single process has a whole L2 cache at its disposal. Applying nested levels of

parallelism improves the data locality and shows better results. Nevertheless, this multi-

threaded solution pays off in comparison with the parallelization via batch scheduling (in this

case, launching a separate data reduction process for each chip), which offered a speedup,}

The schedule construct is added due to the need to process the frames pairwise.

Figure 1:

Speedup in VISIR execution (see 6

for hardware specification).

It shows a good scalability up to 4

threads, with a maximum of 5.89

on 8 threads (74% efficient). On 6

threads, the speedup is lower than

expected, because this amount of

case, launching a separate data reduction process for each chip), which offered a speedup,

in regard to the sequential execution, only close to 2. Here the maximum speedup is 4.69

(59% efficient) on 16 threads, with 4 threads at the extension level, then each one launching

other 4 at the image level.

Figure 3:

Speedup in VISTA
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expected, because this amount of

threads is not optimal for the

machine in use.

5. Conclusions and future work

Given a suitable parallelization strategy, multi-threaded recipes bring substantial advantage

in performance. Nevertheless, their scalability is limited by the nature of the reduction task

itself. The optimal number of threads might not necessarily coincide with the number of

6. Data sheet

The machine used for these tests is a workstation with 8 cores, the Intel Xeon E5420 (Dual 

die @ 2.50Ghz, 4-cores + 6MB cache each). The multi-threaded recipes have been built on 

top of an internal development version of CPL 5.1 with CFITSIO 3.181 (reentrant).

at the image level (red), 2

threads at the image level
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image level (blue) and 8

threads at the image level

(green).
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itself. The optimal number of threads might not necessarily coincide with the number of

available cores. For future machines, a combined solution where several independent data

reduction processes are launched, each process in turn launching in a number of threads, is

expected to be the most efficient one.

The parallelization strategy presented with the VISIR pipeline will be very likely adopted by

the pipeline for the second generation instrument MUSE in order to reduce data cubes.

With regard to future work, the consequences of the new semantics for error handling in CPL

must be analyzed, especially the case where one might need to propagate an error from

within a parallel region. Implementing multi-threaded versions of highly computation-

demanding CPL functions is also a possibility.

top of an internal development version of CPL 5.1 with CFITSIO 3.181 (reentrant).
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