
Adding support to the ALMA Common Software for Real-Time
operations through the usage of a POSIX-compliant RTOS

RODRIGO J. TOBARa, MAURICIO A. ARAYAb
, TOMAS JUERGESc AND HORST H. VON BRANDa

aComputer Systems Research Group, Universidad Técnica Federico Santa Marı́a (UTFSM), Valparaı́so, Chile
bInstitut National de Recherche en Informatique et Automatique (INRIA), Nancy, France

cNational Radio Astronomy Observatory (NRAO), Socorro, NM, USA

ABSTRACT
The ALMA Common Software (ACS) framework lacks of the real-time capabilities to control the antennas’ instrumentation — as has been probed by previous works —, which has
lead to non-portable workarounds to the problem. Indeed, the time service used in ACS, based in the Container/Component model, presents plenty of results that confirm this
statement. This work addresses the problem of design and integrate a real-time service for ACS, providing to the framework an implementation such that the control operations over
the different instruments could be done within real-time constraints. This implementation is compared with the current time service, showing the difference between the two systems
when subjecting them to common scenarios. Also, the new implementation is done following the POSIX specification, ensuring interoperability and portability through different
operating systems.

Problem

The ALMA Common Software (ACS) [1] is the common distributed control framework used throughout the entire ALMA project [2].
This framework provides common patterns and facilities for software development and distributed control, but does not offer hard
real-time capabilities to the users.

This problem arises, for example, in the ACS Time Service. This framework subsystem is based in the Container/Component model [3,4],
with a Timer component (CORBA Servant) in charge of triggering the executions of periodic tasks. This system has been proved to be
non hard real-time [5]. In the other hand, the real-time requirements of the ALMA project have been solved by means of solutions
outside the scope of ACS: special kernel-space modules are in charge of dealing with real-time operations, making them difficult to
maintain and port to other systems. These features, instead, should be offered by the common framework. Our work presents a new
implementation of the ACS Time Service using the Linux RT PREEMPT kernel, which aims to solve this problem.

Linux RT PREEMPT

One of the newest solutions in the world of the real-time operating systems (RTOS) is the usage of the Linux kernel with the
RT PREEMPT patch [6]. This modification to the Linux kernel adds real-time capabilities to the operating systems, making it suitable for
hard real-time operations, even from the user-space. Its usage is currently growing up, at the point that its usage has been studied within
the ALMA project [7]. To test the real-time capabilities of the patch, we stressed the test machine while running the cyclictest [8]
with the following tasks:

Kernel RT PREEMPT vanilla
Load avg. (max) 4.67(5.17) 4.43(4.57)

Interval Priority Min Avg Max Min Avg Max
100 60 13 27 87 1 23 614
600 59 19 32 83 11 34 585
1100 58 19 28 118 13 26 523
1600 57 14 30 104 12 27 721
2100 56 17 34 187 12 30 789
2600 55 30 42 166 12 28 516

• scp-ed a DVD iso image through the Ethernet interface,

• Copied once and again a big file to a new one.

• Compiled a C++ application, cleaned it, and compiled it again.

• Ran the compiled application (Genetic Algorithm)

The test longed 60 seconds, with 6 real-time threads running simul-
taneously. The table at the left summarises the results for this setup,
showing the statistics for the differences between the theoretical and
experimental values of the realization of the real-time tasks (in [µs])
with a base interval of 100 [µs].

With the obtained results, it is clear that the Linux RT PREEMPT-patched kernel is superior that the original one regarding to the
determinism on the timing of its operations, on at least one order of magnitude.

Solution

The proposed solution is based in the Container/Com-
ponent model. This model encourages to embed all
the services that a Component may use into the Con-
tainer. To the current design of the C++ implementation
of the Component/Container model (figure on the left)
we added a new class that is used by the Component to
call real-time-related methods (figure to the right).

The main method that was intended to be implemented was the schedule method, defined in an IDL interface in ACS. We kept
the interface as similar as possible to the original one, thus providing an easy-to-migrate-to solution. Matter of fact, the class that
implements the periodic task does not need changes at all.

To run a periodic real-time task, the user must register it through the RTContainerServices class. Each task will trigger the creation
of a new thread with real-time priority. Once created, the following steps will be taken:

 : ACSComponent : RTContainerServices

 : RTthread

T1 : TimeoutHandler

T2 : TimeoutHandler

 : RTthread

3: schedule(th : TimeoutHandler)

3.1.1: nanosleep()

3.1: <<create>>

1: <<create>>

2: <<create>>

3.1.1: handleTimeout()

4: schedule(th : TimeoutHandler)
4.1: <<create>>

4.1.1: nanosleep()

4.1.2: handleTimeout()

Loop

• Optionally, the thread will wait for a fixed amount of time to
start the execution of the periodic task.

• Then, it calculates the next instant when it should execute the
task and sleeps until then using the nanosleep POSIX call.
This call features nanosecond precision, thanks to the high-
precision timers implemented by the Linux RT PREEMPT ker-
nel.

• After sleeping, the thread will execute the task, calculating the
start and end timestamps with the clock gettime POSIX call.

• Finally, it will repeat the previous steps until canceled.

To schedule the different jobs through time we use the rate monotonic
algorithm [9]. To assign a priority to each task, we use a logarithmic
function, which depends on the period of the given task, and with
adjustable maximum and minimum values for both period and priority
values (see equation 1). This logarithmic relation handles gracefully the
different orders of magnitude that the period values can present, and
at the same time deals better with the different granularities of the two
quantities (period values are continuous, while the priorities range from
0 to 100).

For our particular case, we define the minimum and maximum values
as follows: Pmax = 75, Pmin = 0, Tmax = 1[s] and Tmin = 100[µs]. These
values are in agreement with the needs of the ALMA project, and, in
general, are useful for a great variety of requirements.

Finally, the red line in the figure represents equation 1 with the parame-
ters mentioned above. The green line presents what would be a simple
linear assignment with the same border conditions.

Plog(T) = Pmin −
(

Pmax−Pmin

log
10

(Tmin)−log
10

(Tmax)

)

· Tmax

+
(

Pmax−Pmin

log
10

(Tmin)−log
10

(Tmax)

)

· log10(T)
(1)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1e-05 0.0001 0.001 0.01 0.1 1

R
T

 P
rio

rit
y

Period [s]

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1e-05 0.0001 0.001 0.01 0.1 1

R
T

 P
rio

rit
y

Period [s]

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1e-05 0.0001 0.001 0.01 0.1 1

R
T

 P
rio

rit
y

Period [s]

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1e-05 0.0001 0.001 0.01 0.1 1

R
T

 P
rio

rit
y

Period [s]

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1e-05 0.0001 0.001 0.01 0.1 1

R
T

 P
rio

rit
y

Period [s]

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1e-05 0.0001 0.001 0.01 0.1 1

R
T

 P
rio

rit
y

Period [s]

Experiments

The experiment setup used to test our new implementation consid-
ers four timestamps that repeat on each execution of the periodic
real-time task, as shown in the figure on the left. Independently of
the realization of a periodic task execution, we consider the task as
if it would be absolute periodic (θ) or relative periodic (φ) [5]. This
difference arises from the nature of each requirement: the time inter-
val from execution to execution of a task can be driven by an initial
instant on time (t0), or by the previous execution instant of the task
(t4(i−1)). Since t4i represents the start of the execution of the real-
time task in the scheduling thread, we consider this instant as our
main reference.

For a realization of the real-time task withN executions and a period P , we collect the measured differences for the task when considered
as an absolute periodic requirement (∆abs, equation 2) and when considered as relative periodic (∆rel, equation 3).

∆abs = {δ0
abs

, δ1
abs

, · · · , δN−1
abs

}
δi

abs
= i · P − (t4i − t0)

(2)
∆rel = {δ0

rel
, δ1

rel
, · · · , δN−1

rel
}

δi

rel
=

{

0 if i = 0
P − (t4i − t4(i−1)) otherwise

(3)

Over these two set of data (∆abs and ∆rel) we calculate the maximum between the absolute value of the differences (jitter), and the root
square of the Mean Square Error (MSE) of the values as a measurement of the concentration of the differences around the mean value.
We use two different deployments to check the Time Services:

• One client: We register only one real-time task. This deployment measures the behavior of the system without stress.

• Harmonic clients: We register six real-time tasks, the first with period P , the next with period 2P and so on. This stresses the
system to meet several deadlines at the same time, and therefore introduces more difficulty to the problem.

For each case we used base periods of 4 [ms], 24 [ms] and 48 [ms], simulating the real-time requirements of the CONTROL subsystem
in the ALMA project [10]. The computer used for the experiments was a Pentium III (Coppermine) @644 Mhz with Arch Linux, and a
2.6.26.3-rt5 kernel.

Results

These first results for a single client setup show a
high contrast between the two time services, and even
worse results for the ACS Time Service than those
reported by [5], confirming the fact that the current
ACS Time Service does not offer real-time capabilities.
In all cases our implementation had a better jitter,
with differences up to 2 orders of magnitude (in φ24)
with the jitter presented by the ACS Time Service
implementation. The differences are even more no-
torious for the harmonic clients case, where there are
differences of up to 4 orders of magnitude (in θ4). The
worst case executions for each implementation have
an error near to 30 000 % for the ACS Time Service (θ4,
harmonic clients deployment), and of 8 % for the our
implementation (φ4, harmonic clients deployment).

One client Harmonic clients

Type
Jitter [µs]

√
MSE [µs] Jitter [µs]

√
MSE [µs]

ACS RT ACS RT ACS RT ACS RT
θ48 89 75 22.90 19.36 6127 60 1527.17 42.87
θ24 2309 76 34.05 44.82 4017 58 1514.2 39.47
θ4 1453 173 20.83 26.01 1247292 291 724972.34 35.46
φ48 102 92 5.54 3.59 6142 66 2172.78 5.69
φ24 2335 94 38.51 2.97 4032 80 2157.17 5.13
φ4 1278 193 19.21 4.28 11555 321 1978.72 5.02

After the first experiments, and in order to diminish the possible causes of jitter, we tuned the ext3 partitions of the machines to
be mounted in asynchronous mode, with a commit interval greater than a single experiment’s duration. This way, we avoid all disk
transfers, maintaining the information in the filesystem cache in RAM, in effect simulating a diskless computer during the execution of
the experiments, and thus we have a less IRQ-ed system.

One client Harmonic clients

Type
Jitter [µs]

√
MSE [µs] Jitter [µs]

√
MSE [µs]

ACS RT ACS RT ACS RT ACS RT
θ48 62 67 17.67 27.47 1977 49 1159.96 35.2
θ24 2036 80 31.96 32.11 1974 46 1133.08 30.92
θ4 749 47 24.01 20.73 842251 75 465753.11 37.41
φ48 81 13 5.41 2.49 2001 39 1654.58 4.99
φ24 2052 14 36.95 1.86 1999 41 1616.53 6.57
φ4 804 59 14.17 2.05 11945 36 1477.07 3.07

In these experiments, only the θ48 requirement (in the one
client deployment) was (just a little) better served by the cur-
rent ACS Time Service, while the rest were totally dominated
by our implementation. Once again, the harmonic clients
setup showed the worst results for the ACS Time Service,
while our implementation stayed with low jitter, which even
got reduced in some cases. Most important, all the jitter val-
ues of our implementation are well below the 150 [µs], so we
can claim that this Time Service does provide real-time sup-
port to ACS, and complies with the ALMA real-time require-
ments.

Latencies

 0

 5000

 10000

 15000

 20000

 25000

 400 500 600 700 800 900 1000 1100

O
cu

rr
en

ci
es

Latency [µs]

Min: 451
Max: 979

Avg: 579.08
σ: 46.74

We also studied the latencies that the system
experimented. The latencies are defined as the
differences between the instant when the call is
made from the scheduling thread and the in-
stant when the execution really start (t4i−1−t4i).

The figure on the left shows the latencies for the
current Time Service implementation. A high
mean (about 580 [µs]) and standard deviation
put into evidence the low reliability of this im-
plementation. These results are due to the huge
CORBA call stack that is produced between the
scheduling component and the action handler.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 1 2 3 4 5 6 7

O
cu

rr
en

ci
es

Latency [µs]

Min: 1
Max: 7

Avg: 1.47
σ: 0.5

In contrast, the figure on the right shows the latencies for the new implementation. Since this new implementation uses direct calls to
the action handler, the latencies are highly minimized, falling to no more than 7 [µs] in the worst case.

Conclusions

The Linux RT PREEMPT kernel shows a much more predictable behavior than
the common vanilla Linux kernel, even when the machine is put under the stress
of heavy disk operations, network traffic and CPU-intensive applications. This
makes it suitable for hard real-time tasks, such as automatic control systems. Linux
RT PREEMPT has proved to be a good new approach among the open source real-
time kernel because its design, keeping its monolithic form, but offering proven real-
time performance on several architectures. This opens a large number of new pos-
sibilities for the Linux world to be present in the control industry. The current large
activity around the development of this patch is reflected on a quick release cycle,
good technical assistance through mailing list and forums, and a growing commu-
nity, supported by the already existent Linux kernel development community.

Also, the new implementation of the Time Service does provide real-time sup-
port for the ALMA Common Software, at least at the level of the requirements
of the CONTROL subsystem. Thanks to its design and the usage of the POSIX
specification, our new implementation presents much lower jitter values when
stressing the system with several requests. Even more, in low stressed scenarios
it also showed better behavior than the original one. This proves that ACS could
support real-time operations from user-space, and get rid of the kernel modules
work-around solutions that are currently in use in the CONTROL and CORR sub-
systems.

Future Work

As a future work we would like to extend the study of our new implementation
over other POSIX-compliant RTOSs. Since this work was only focused on the
usage of Linux RT PREEMPT, other RTOSs were left behind. QNX, for instance,
would be a good candidate to be studied, but effort should first be spent in order to
support QNX for ACS. Previous work has been done in this matter by the ALMA-
UTFSM Group, but with not very inspiring results.
By testing our new implementation over other RTOSs would give us the oppor-
tunity to find even better results that those reported in this work, thus offering
different alternatives to the ALMA Common Software real-time support, and ex-
tending its capabilities towards being a generic distributed control framework,
reusable in any other project.

Acknowledgements
This work could not have been done without the support of the
ALMA-CONICYT grant # 31060008. Rodrigo Tobar’s work was
also partially financed by the “Programa de Iniciación en la Inves-
tigación Cientı́fica” grant. Part of this trip was also financed by
the “Dirección General de Investigación y Postgrado” of the UTFSM.
Jorge Ibsen and Flavio Gutiérrez have been of great support dur-
ing the entire work.

References
[1] Chiozzi, G. et al., “The ALMA Common Software, ACS status and developments,” in [Proceedings of ICALEPCS 2005], (2005).
[2] Tarenghi, M., “The Atacama Large Millimeter/submillimeter Array: Overview & status,” Astrophysics and Space Science 313, 1–7 (Jan. 2008).
[3] Sommer, H. and Chiozzi, G., “Transparent XML binding using the ALMA Common Software (ACS) container/component framework,” in [Proceedings of the 13th Astronomical Data Analysis Software & Systems Conference], (2003).
[4] Sommer, H., Chiozzi, G., Zagar, K., and Voelter, M., “Container-component model and XML in ALMA ACS,” Advanced Software, Control, and Communication Systems for Astronomy 5496(1), 219–229, SPIE (2004).
[5] Araya, M. A., Verifying Real-Time Periodic Properties on the ALMA Common Software Time System, Master’s thesis, Departamento de Informática, Universidad Técnica Federico Santa Marı́a (May 2008).
[6] Rostedt, S. and Hart, D. V., “Internals of the RT patch,” in [Proceedings of the Linux Symposium 2007], (2007).
[7] Pisano, J., Amestica, R., Juerges, T., and Jeram, B., “Real-Time Linux Migration Proposal,” (Mar. 2009).
[8] Gleixner, T., “Cyclictest.” http://rt.wiki.kernel.org/index.php/Cyclictest.
[9] Liu, C. L. and Layland, J. W., “Scheduling algorithms for multiprogramming in a hard-real-time environment,” J. ACM 20(1), 46–61 (1973).
[10] Farris, A., Marson, R., and Kern, J., “The ALMA telescope control system,” in [Proceedings of ICALEPCS 2005], (Oct. 2005).

Atacama Large Millimeter Array

Contact e-mail: rtobar@csrg.inf.utfsm.cl / For more information about ALMA development and research at UTFSM Computer Systems Research Group, please visit our web site http://alma.inf.utfsm.cl

