

TOWARD A REFERENCE IMPLEMENTATION OF A
STANDARDIZED ASTRONOMICAL SOFTWARE

ENVIRONMENT
L. Paioro [1], B. Garilli [1], P. Grosbøl [2], D. Tody [3], T. Fenouillet [4], Y. Granet [4], C. Surace [4]

[1] INAF – IASF Milano, via Bassini 15, 20133 Milano, Italy (e-mail luigi@lambrate.inaf.it)
[2] European Southern Observatory, Karl-Schwarzschild Str. 2, Garching, 85748, Germany

[3] National Radio Astronomy Observatory / VAO, 1003 Lopezville Rd, Socorro, NM, 87801-0387, USA
[4] Laboratoire d'Astrofisique de Marseille, Université de Provence, Marseille, France

The OPTICON Network 3.6 (FP6) and the US NVO, coordinating with international partners and the Virtual Observatory, have already identified high-level requirements and a global
architectural design for a future astronomical software environment. In order to continue this project and demonstrate the concepts outlined, the new OPTICON Network 9.2 (FP7) was born
and is working on a concrete prototype which will contribute to the development of a reference implementation of the basic core system to be jointly developed by the major partners. As the
reference implementation stabilizes, we plan to work with selected groups within the astronomical community to port software to test the new environment and provide feedback for its further
evolution. These groups will include both producers of new software as well as the major legacy systems (e.g. AIPS, CASA, IRAF/PyRAF, Starlink and ESO Common Pipeline Library).

Abstract

For several years the astronomical community has used different data reduction and
analysis software which perfectly fitted their scientific needs. Good examples of such
software are: IRAF, MIDAS, AIPS, GIPSY and so on, which are still very important
tools, widely used today as in the past. However, their old design and lack of modern
technologies make it complicated to interact with them and there is scarce support for
the new distributed technologies like Virtual Observatory, GRID, HPC, etc. as well as
a limited development and maintenance in general.

1. Current Scenario

The Future Astronomical Software Environment (FASE) project doesn't aim to be a
Virtual Observatory competitor but rather to start from it and create a new software
platform for astronomy with extended and even more extensible capabilities. The
principal targets are:
a) integration of legacy software within a modern framework that permits to extend

their functionalities;
b) easy support and development of new interoperable and distributed applications or

simple computational tasks.

2. Project Targets

The high level requirements and the main architectural concepts have already been
defined within the OPTICON Network 3.6 in collaboration with NRAO/USVAO. A
white paper describing the framework have been produced as well and distributed
with the other document through the project Twiki site [*]. This initial work has been
carried on thanks to a specific EU FP6 funding. A new EU FP7 funding has been
obtained by OPTICON (leading to Network 9.2) with the purpose of demonstrating the
concepts outlined so far with at least one practical implementation meant to create a
base for an eventual reference implementation. This implementation comes from a
prototyping work with the additional objective of contributing to the architectural
design refinement.

3. Networks Working On The Project

The architectural design foresees a modular approach (see Figure A). This way each
single framework component (or set of components) can be developed apart and
included in the whole framework as a plugglable module (or package). The
development of new framework modules is made easier thanks to the component
container paradigm. A container is a sort of wrapper that connects any component
(application or computational task) to the framework. The main benefit of a modular
architecture is the flexibility and extensibility. The basic framework capabilities can be
expanded with new local components or coming from the wide astronomical
community.

4. The Architecture

Figure A. The modular
architecture of FASE. It
can be presented
schematically with four
layers: the presentation
layer (what the user
sees), the application
layer (what is locally
working), the execution
framework (the
distributed execution
engine) and at the final
endpoint the components
(the actual computational
code) which live within
their containers.

Since the beginning of the FASE project, a parallel prototyping work has been started
from a joined effort between INAF-IASF Milano and LAM institutes. Three
experimental implementations have been produced so far, the first and the second
ones based on DBus, the third based on the emerging SAMP protocol and studied in
order to explore the potential of this VO protocol.
With the beginning of OPTICON N9.2, a more formal prototyping work has been
started. As starting point, the Milano-Marseille collaboration has significantly
contributed to the production of three document drafts concerning the interfaces for
the parameter set mechanism, the package manager and a proposal for a basic
implementation. These three documents are now under discussion within the Network
and freely accessible via the OPTICON Network 9.2 Twiki site [*]. The present
prototyping work has the following short term goals:
a) a basic packaging system and package installer tool;
b) a package manager implementation at least in Python and Java, while a C

implementation is planned to be developed afterwards;
c) the definition of the language specific component containers interfaces (Python

Java, C/C++);
d) the definition of a recipe containing the minimal set of operations a component

developer should perform to put the code in the framework.
A prototype has already demonstrated the FASE architecture concepts with a working
example (see section 6) executing a VIMOS Interactive Pipeline Graphical Interface
(VIPGI [**]) task. Once the short term goals will be reached, the system will be tested
with the ESO Common Pipeline Library, trying to include at least one task in the
framework.

5. Prototyping FASE

[*] https://www.eso.org/wiki/bin/view/Opticon/WebHome
[**] http://cosmos.iasf-milano.inaf.it/pandora/vipgi.html
[***]http://cosmos.iasf-milano.inaf.it/trac/fase

6. Working Examples

FASE concepts have been already demonstrated with working examples based on
the present prototype. Three execution modes have been implemented, for which we
report three examples, based on the VIPGI pipeSpApplyFF task (managed by a
component named PreRed), used to perform a preliminary reduction of the VIMOS
data:

Example 1: synchronous execution within the Python process (in-line mode);
Example 2: asynchronous execution in a distributed context (distributed mode);
Example 3: synchronous execution from command-line (host mode).

The Milan-Marseille collaboration is working on a set of Java examples as well. If you
are interested in the FASE project and/or you wish any other information on the
prototype development, please contact the poster author or visit the OPTICON N9.2
Twiki site [*] or the Milan-Marseille prototype site [***].

Example 1: Example 2:

Example 3:
shell > invoke pandora.vipgi PreRed --help
Usage: pandora.vipgi PreRed (or mos.reduction.prepare) [options]

Options:
 --version show program's version number and exit
 -h, --help show this help message and exit
 --ipset=IPSET Input pset file
 --opset=OPSET Output pset file
 --image=IMAGE Input image
 --msBias=MSBIAS Master bias frame
 --msDark=MSDARK Master dark frame
 --msFlat=MSFLAT Master flat frame
shell > invoke pandora.vipgi PreRed --image st_EG-274_LR_red_Q1_1.fits --msBias msBias_spec_Q1.fits
--msFlat msFlat_STD_LR_red_Q1.fits

