
A distributed, real-time data monitoring system as ground support equipment
for balloon-borne astronomy experiments

C. M. Hubert Chena, Wayne H. Baumgartner, Walter R. Cook, Andrew J. Davis and Fiona A. Harrison
California Institute of Technology, Mail Code 292-17, Pasadena, CA 91125, USA

ahubert@srl.caltech.edu

Context
We developed a real-time data-monitoring
software suite for the High Energy Focusing
Telescope (HEFT). HEFT, one of the first
hard X-ray focusing telescopes (20–70 keV),
was launched on a balloon-borne platform
from southwest USA in 2005. This software
suite was our ground-station equipment for
monitoring the focal-plane instruments
during on-site calibration, pre-launch
practice drills, and an observation flight
of 25 hours.

Features / Design objectives
•Distributed and scalable: servers + clients.
•Mostly platform-independent: Java

(+ 1 perl client), simple UDP datagrams.
•Task-specific servers provide data

redundancy.
•Allows for both real-time data input and

playback of saved data.

Server-client architecture
Display Client 1

Et
he

rn
et

 L
AN Display Client 2

Display Client 3

Display Client 4
Data ServerData Logger

radio telemetry
Real−time

EIA−422 serial line

•Multiple servers performing dedicated
tasks guarantee the integrity and
redundancy of logged data, and reduce
server load.

•UDP multicasting of photon & sensor data
makes possible an unlimited number of
concurrent display clients, without
increasing server load.

• Separation of data processing and display
makes code development modular.

Display clients
Detector maps, in sky coordinates

•Rotated detector maps show X-ray images
as seen from sky.

•Event selection in time and energy
(wavelength) capable.

Detector maps, in detector coordinates

•Unified interface for displaying
pixel-specific data: photons, test pulses,
leakage current, baseline voltage, etc.

•Near-real-time update, interval adjustable.
•Event selection in time and energy

(wavelength) capable.
•Resting pointer at a pixel displays pixel

coordinates and value as tooltip.
•Clicking on a pixel or dragging across

corners of a group of pixels displays light
curve and spectrum in new window.

Housekeeping sensor readings

•Unified display of housekeeping sensor
readings (of pressure, temperature and
voltages), showing latest readings,
5-minute averages and standard
deviations.

•Near-real-time update, interval adjustable.
•Clicking on a cell displays time-series in

new window.
•Colour and (optional) audio alarms when

a value goes out of expected range.

Time series, light curves and spectra

•Unified display of time series, light curves
and spectra.

•Near-real-time update, interval adjustable.
•Event selection in time and energy

(wavelength) capable.
•Zoom in by dragging pointer from top-left

corner of zoom window to bottom-right;
zoom out by the reverse.

Implementation detail
Data server: Data flow

Housekeeping Data UDP multicast

Input port servicing Buffer Raw data logging

in memory (locked access)
Data Repository Object

Science Data UDP multicast

Buffer

Input data
decoding/processing Buffer Processed data

logging

Buffer Data playback

Client request handling

Serial port buffer

Processed data
repository

Raw data
repository

RAID−1 disk array

Data input from file

TCP/IP Data service

Connection requests

Data requests

Spawn

Data requests

LAN

•Multi-threading provides modularity,
enables incremental development.

•Task-specific servers (logging, playback)
reuse the same code, running only relevant
threads.

•Events from input serial port drives
execution, minimizes risk of data loss.

Data server: Data structures

De
te

ct
or

 2
A

De
te

ct
or

 1
B

De
te

ct
or

 1
A

Ho
us

ek
ee

pi
ng

 d
at

a

Main data repository

Balanced tree in energy order Double linked list in time order
Pixel cell / housekeeping item

Pi
xe

l r
ow

/ s
en

so
r I

D

Pixel column / sensor type

/ housekeeping data set
Detector module

•Data structures in both time and energy
order allow efficient insertion, retrival and
selection.

•Data from housekeeping sensors share the
same data structure as pixel-specific data
from detectors, reducing code complexity.

Display clients
•Multi-threading separates timed data

request/input, graphical rendering, and
user interface.

• Shared, common code for TCP/IP
communication with data server for all
Java clients, while graphical front ends
vary.

Network interface
UDP multicast
•Latest science and housekeeping data

require immediate mass distribution;
occasional data loss is unimportant.

•Data server transmits data as UDP
datagrams to designated IP multicast
group address (and port) at 1 Hz;
display clients ‘tune’ into the same group.

•Platform- and languange-independent
protocols make possible separate code
development for server and client, and
modular upgrade/rewrite.

Byte Content
0– 3 Datagram ID: ”HEFT” in ASCII (0x48, 0x45, 0x46, 0x54)
4 Bits 0–4: Detector ID (0x2–0x7) / Housekeeping (0x0)

Bits 5–7: Data type (photon/test pulse/vetoed/baseline)
5 Pixel column ID (0–47) / sensor type (P/T/V)
6 Pixel row ID (0–23) / sensor ID
7–14 Time tag

15–18 Pulse height / sensor reading

TCP/IP unicast
•User-selected time series, light curves and

spectra requires dedicated communication
line.

•Display client sends data requests (data
type, [xmin, xmax], [ymin, ymax], [Emin, Emax],
[tmin, tmax] ) to listening port on data server.

•Data server transmits requested data as
serialization of Java objects (as all unicast
clients are currently implemented in Java).

Performance and testing
We ran the system daily over two
months-long flight campaigns, including
a 110 hr-long continuous calibration run
(wired input directly from the focal plane)
and a 25 hr-long balloon flight (input from
radio telemetry with data dropouts).
Changes were made iteratively over the
campaigns until a final code freeze in view
of the balloon launch. The software has since
been functioning, meeting specifications.

Invitation to adopt
This system, and individual ideas of its
implementation, can be adapted for use in
future experiments requiring sophisticated
real-time monitoring and data display.
We welcome discussions of prospects
for collaboration and code reuse.

Acknowledgements: This work is funded by the NASA Space Science “Supporting Research and Technology” (SR&T) programme under award number NAG5-5398.


