A distributed, real-time data monitoring system as ground support equipment for balloon-borne astronomy experiments

Context

We developed a real-time data-monitoring software suite for the High Energy Focusing Telescope (HEFT). HEFT, one of the first hard X-ray focusing telescopes (20–70 keV), was launched on a balloon-borne platform from southwest USA in 2005. This software suite was our ground-station equipment for monitoring the focal-plane instruments during on-site calibration, pre-launch practice drills, and an observation flight of 25 hours.

Features / Design objectives

- Distributed and scalable: servers + clients.
- Mostly platform-independent: Java (+ 1 perl client), simple UDP datagrams.
- Task-specific servers provide data redundancy.
- Allows for both real-time data input and playback of saved data.

Server-client architecture

- Multiple servers performing dedicated tasks guarantee the integrity and redundancy of logged data, and reduce server load.
- UDP multicasting of photon & sensor data makes possible an unlimited number of concurrent display clients, without increasing server load.
- Separation of data processing and display makes code development modular.

Display clients Detector maps, in sky coordinates

- Rotated detector maps show X-ray images as seen from sky.
- Event selection in time and energy (wavelength) capable.

 +++	HH		**	-	⊢	₩	╘╧	82	H	
					Ħ	廿	Ħ			
 +++-	88		₩		++-	⊷	₽₽	Η.		
	H		tt.	HH	H	╈	╈	HP.	H	
			н							
 +++-	88			-	⊢	╘	۰.	++		H
+++			١t.	++		-		H	-	
		=	п.			\Box	Ħ	II		
 +++	HH	**	+#		HE	H	↔	+#	HH	ŀ
			Ħ		Ħ	ΗĒ	t		Ħ	
 11		-11	11			ц.	Ħ	ц.	# 1	E
++-			₩	↔	-		₽		HH	
			**		Ħ	Ħ	Ħ	Ħ	ΗH	
 	==	#	₽₽		₽	Π.	₽	₽		E
 	HH	+++	++		H	⊢	₽-	₩	+++	
	Ш		±₽		E	Ħ	Ħ	Ħ	ΗH	
 	==	┯	Π.		₽	₽₽	₽	₽	===	E
 16	HH	+++	┿	↔	⊢	₽	↔		HH	
	Ш		<u>++</u>		Ħ	Ħ		tt.	Ħ	
 ≖			H			₽	₽	₽		
 ***	88	+++	┿	↔	H	⊢	↔	↔	81	
		**	Ħ	Ħ		Ħ	Ħ	Ħ	Ħ	
 ≖		#	н			₽	₽	₽		
 +++		+++	÷₽	⊷	⊢	₽	₩	₽-	₩	
			Ħ			tt	tt	tt	Ħ	
 11			Ħ			H.	LT.	Ħ	ΗI	E
 +++	HH	+++	┿	↔	Η-	₽	₽.	₩	₩	
	Ш		Ħ			Ħ	Ħ	Ħ	Ħ	
 ∓₽	==	#	Π.		₽	₽	₽	₽		
++-		++	₩	↔	⊨	₽	₽	₽	H	
			tt			t	tt	tt	ΕH	
 ++-	88		н.		-	₽₽	ĻĮ	4	₽₽	
++-		++	₩	↔	⊨	₽	₽	₽	H	
*			tt			tt	tt	tt	ΕH	

- Unified interface for displaying pixel-specific data: photons, test pulses, leakage current, baseline voltage, etc.
- Near-real-time update, interval adjustable.
- Event selection in time and energy (wavelength) capable.
- Resting pointer at a pixel displays pixel coordinates and value as tooltip.
- Clicking on a pixel or dragging across corners of a group of pixels displays light curve and spectrum in new window.

C. M. Hubert Chen^a, Wayne H. Baumgartner, Walter R. Cook, Andrew J. Davis and Fiona A. Harrison California Institute of Technology, Mail Code 292-17, Pasadena, CA 91125, USA ^{*a}hubert@srl.caltech.edu</sup>*

Detector maps, in detector coordinates

Network interface

UDP multicast

• Latest science and housekeeping data require immediate mass distribution; occasional data loss is unimportant.

• Data server transmits data as UDP datagrams to designated IP multicast group address (and port) at 1 Hz; display clients 'tune' into the same group.

 Platform- and languange-independent protocols make possible separate code development for server and client, and modular upgrade/rewrite.

Byte Content 0– 3 Datagram ID: "HEFT" in ASCII (0x48, 0x45, 0x46, 0x54) Bits 0-4: Detector ID (0x2–0x7) / Housekeeping (0x0) Bits 5–7: Data type (photon/test pulse/vetoed/baseline) Pixel column ID (0–47) / sensor type (P/T/V)Pixel row ID (0–23) / sensor ID 7–14 Time tag

15–18 Pulse height

/ sensor reading

TCP/IP unicast

• User-selected time series, light curves and spectra requires dedicated communication

• Display client sends data requests (data type, $[x_{\min}, x_{\max}]$, $[y_{\min}, y_{\max}]$, $[E_{\min}, E_{\max}]$, $[t_{\min}, t_{\max}]$) to listening port on data server. • Data server transmits requested data as serialization of Java objects (as all unicast clients are currently implemented in Java).

Performance and testing

We ran the system daily over two months-long flight campaigns, including a 110 hr-long continuous calibration run (wired input directly from the focal plane) and a 25 hr-long balloon flight (input from radio telemetry with data dropouts). Changes were made iteratively over the campaigns until a final code freeze in view of the balloon launch. The software has since been functioning, meeting specifications.

Invitation to adopt

This system, and individual ideas of its implementation, can be adapted for use in future experiments requiring sophisticated real-time monitoring and data display. We welcome discussions of prospects for collaboration and code reuse.