
Reusable state machine code generator
ARTURO A. HOFFSTADT1, HEIKO SOMMER2, LUIGI ANDOLFATO2, CECILIA REYES1

1Computer Systems Research Group, Universidad Técnica Federico Santa Marı́a (UTFSM), Valparaı́so, Chile
2European Southern Observatory, Garching b. München, Germany

ABSTRACT
The State Machine model is frequently used to represent the behaviour of a system, allowing one to express and execute this behaviour in a deterministic way. A
graphical representation such as a UML State Chart diagram tames the complexity of the system, thus facilitating changes to the model and communication between
developers and domain experts.

We present a reusable state machine code generator, developed by the Universidad Técnica Federico Santa Marı́a and the European Southern Observatory. The
generator itself is based on the open source project architecture, and uses UML State Chart models as input. This allows for a modular design and a clean separation
between generator and generated code. The generated state machine code has well-defined interfaces that are independent of the implementation artefacts such
as the middle-ware. This allows using the generator in the substantially different observatory software of the Atacama Large Millimeter Array and the ESO Very
Large Telescope. A project-specific mapping layer for event and transition notification connects the state machine code to its environment, which can be the Common
Software of these projects, or any other project.

This approach even allows to automatically create tests for a generated state machine, using techniques from software testing, such as path-coverage.

Problem

Description

Design and specification of discreet events involved in software, is a complex task for software architects and develop-
ers. Several visual formalisms can tackle this problem, and allows to specify the workflow without much trouble. But
when software reach a medium size, UML sequence diagrams explodes in complexity, and the straightforwardness of
its representation is lost in confusion.

State machines has the same problem, that is why Harel, in [1], proposes State charts, an extension to the visual
formalism for state machine, that allows to reduce visual complexity, and keeps the mathematical determinism of
state machines. This new formalism was later standarised and included as part of UML2.0.

In other front, state machines entities (understanding entity as a component of the specification of a language) does
not map directly to program language entities. There are several libraries, like boost that currently have state machine
implementations. So, to allow model driven development using state charts models, a special transformation and
code generation has to be implemented.

Reusability

There is another important problem that this project
attacks. Reusability. ALMA Common Software aims
to be a generic distributed control platform, and many
applications has the same problems described before,
not only in astronomy, but also in other areas. Speaking
in a more specific manner, re implementing the state
machine logic through several ALMA projects is far
from ideal, and in the case of VLT Common Software,
several applications has been created using their own
state machine code generation framework [4].

This project aims to solve this problems, and integrate
the better qualities of each ACS and VLT implementa-
tions of code generation.

Example presented in [1] by Harel, showing the visual
complexity reduction of Statecharts.

State Machine Code Generator

Or SMCG, is a reusable state machine code generator. It is based on openArchitectureWare (oAW), and uses UML2
XMI 2.1 state chart models as input, to generate compilable and executable code. The current implementation is
based on work from Niaz and Tanaka ([2] and [3]), a previous implementation of code generator from Heiko Sommer
created for the ALMA project, and the WorkStation Framework from VLT Common Software [4].

The generator is primary based on oAW. Through its workflow engine, the code generator is configured, setting input
model, output code directory, and parameters such as language used for code output (Java or C++), and also which
framework used as event engine (VLT or ACS). Templates for code generation were created keeping in mind that new
languages or engines can be added to this project, so further capabilities can be added.

Workflow

1. Generation starts with the indication of the input model, in UML2 XMI 2.1 format.

2. Several checks are ran over the model, to ensure compatibility, such as naming convention (presence and unique-
ness of names), warn about missing or experimental features, and so on.

3. Later, a model-to-model mapping takes place, mapping the specific instance of UML2 statechart used as input,
to the UML2 statechart metamodel.

4. Next step is to generate the engine to allow execution of the state machine. This engine allows event handling,
logging, and control of the state machine. Engines are platform dependant.

5. Continuing the workflow, is the code generation for the state machine, which creates the logic for the state
machine. This implementation is only language dependant. Specific interfaces allow changes in engine or state
machine logic.

6. Last step, is creation of tests. This tests are preset, and provides a minimum set for testing known cases.

Using State Machine Code Generator

First task, is to model the system as a finite state ma-
chine. States has to clearly defined, with no overlying
functions, and transitions needs to have clear events,
and guards is necessary. Names for states, transitions
and events has to be defined, and to be unique. Orthog-
onal regions are supported, as also composite states.
Every composite state needs to have an initial node.
Also, at least one final node has to be determined.
Names in this cases are not needed.

Once the logic of the software has been created, is time
to configure SMCG. Configuration is done in the main
workflow file. Selection of framework, language and
input model, are necessary. Execution of workflow
file, will start code generation, and then the specified
workflowwill take into place, as in the previous section.

The recommended approach to create software in
SMCG, is model driven development, but other ap-
proaches can be used. Examples of Usage: Model of an ALMA Subsystem’s

lifecycle.

Architecture
As this is a code generator, two aspects of architecture were analysed. First, is the architecture of the generator itself,
and second but not less important, is the architecture of the generated code.

Code Generator

The generator has a flexible structure, based mainly on the openArchitectureWare’s workflow file, and templates.
Configurations are taken at this time directly from variables set in the workflow file. Selection of framework and
language are done in this manner. State machine implementation, regardless of framework or language, is platform
independent, so this can be reused, even to the degree of having no underlying framework. A mapping layer in the
state machine engine allows to easily change from ACS to any other middleware. ACS mapping layer is complete,
VLT CS is under development.

State Machine Code

The generated code architecture is based on [1] and [2], which propose that each state is represented by a class, using
the state pattern. Transitions are represented by method in the corresponding state, and actions are implemented in a
separate context class. Delegation is used to process events in the corresponding state object. To implement hierarchy
(composite state) composition was used. This composition is defined in runtime, during state construction.

Some advantages of this implementation are the lower
number of generated classes, and that only one file is
needed to be modified: the context class, in which the
actions are implemented.
Current implementation supports:

• Composite States (“or” states)

• Orthogonal States (“and” states)

• Guards

• Actions

• Activities

• Events

• Java Implementation

• ACS Framework

Next version, to be released and the end on November
2009, will include support for VLT CS, C++ Implemen-
tation, and other functionalities. Further work will be
conducted by the CSRG group at UTFSM, and ESO, to
enhance and add more characteristics.

Generated Code Architecture.

Conclusions and Future Work

Code generation enhances reusability, and model drivel development allows expert domains to have a bet-

ter grasp on software specifics. UML State chart has been a great addition to UML, standardised this visual

formalism, and also puts at hands of developers, another powerful tool for software design.

Development in this project continues. C++ implementation will be available for next release, but most im-

portant, is the current state charts specification that W3C is writing [5], that allows to specify a complete state

machine, including code for actions, and other new characteristics, such as inheritance. Further work will

concentrate on integration of the current available state chart engines that Apache and Qt Software have imple-

mented, and the adaption of the code generator to accept SCXML specification of state machines as input.

Acknowledgements

This work was supported by ALMA-CONICYT Fund project #31060008 “Software

Development for ALMA: Building Up Expertise to Meet ALMA Software Requirements

within a Chilean University”, under development at Universidad Técnica Federico

Santa Marı́a.

References
[1] David HAREL, “Statecharts: A Visual Formalism for Complex Systems” in [Science of Computer Programming Vol. 8, No. 3 ], (June 1987), pp. 231-274.
[2] I.A. Niaz and J. Tanaka, “Code Generation from UML Statecharts”, in [Proceeding (397) Software Engineering and Applications], 2003.
[3] I.A. Niaz and J. Tanaka, “Mapping UML Statecharts to Java Code”, in [Proceeding (418) Software Engineering ], 2004.
[4] L. Andolfato, “Very Large Telescope Workstation Software Framework Design Description”, VLT-MAN-ESO-17210-3389, Mar. 2006.
[5] J Barnett et. al., “State Chart XML (SCXML): State machine notation for control abstraction ”, W3C Working Draft, 2007

Atacama Large Millimeter Array

Contact e-mail: ahoffsta@inf.utfsm.cl / For more information about ALMA development and research at UTFSM Computer Systems Research Group, please visit our web site http://alma.inf.utfsm.cl


