
Usally every project runs through a
preliminary design review and
afterwards a final design review, a lot
of documents are produced, printed as
pdf and bastet. The problem is now to
find the information, mostly it is
distributed in dozens of documents and
it is difficult to search in pdf file.
Another problem is that over the time
it is realized that the final design was
not that final, but the documents dont
get updated regulary.

Management of astronomical software
projects with open source tools.

Florian Briegel¹, Thomas Bertram¹, Jürgen Berwein¹, Frank Kittmann¹²
¹ Max Planck Institute f. Astronomy, Königstuhl 17, 69117 Heidelberg, Germany

² University of Cologne, Zülpicher Str. 77, 50937 Cologne, Germany

1. Telling the Story - Instrument Documentation

2. A plan for Action - Working with Tickets, Schedules and Milenstones.
3. Make it so - Working on the Software

4. The Good, the Bad & the Ugly - Test and release

Abstract 5. Write me a Ticket - User feedback

References
[1] Autotools - http://sources.redhat.com/autobook/
[2] Xen - http://www.xen.org/
[3] Subversion - http://subversion.tigris.org/
[4] Trac - http://trac.edgewall.org/
[5] Trac Plugins - http://trac-hacks.org/
[6] Bitten - http://bitten.edgewall.org/

In this poster we will offer an innovative approach to managing the software development
process with free open source tools, for building and automated testing [1], a system to
automate the compile/test cycle on a variety of platforms to validate code changes [6], using
virtualization to compile in parallel on various operating system platforms [2], version control
and change management [3], enhanced wiki and issue tracking system for online
documentation and reporting [4] and groupware tools as they are: blog, discussion and
calendar [5].
Initialy starting with the Linc-Nirvana instrument a new project and configuration
managment tool for developing astronomical software was looked for. After evaluation of
various systems of this kind, we are satisfied with the selection we are using now.
Following the lead of Linc-Nirvana most of the other software projects at the MPIA are using
it now.

Trac has a built-in wiki engine, used for
documentation throughout the system.
WikiFormatting is used in wiki pages, tickets
and other optional plugins. This allows for
formatted text and hyperlinks in and between
all Trac modules.
Editing wiki text is easy, using any web
browser and a simple formatting system or a

javascript based wysiwyg editor, rather than more complex markup languages like HTML, too
complicated to allow fast-paced editing, and distracts from the actual content of the pages.
The main goal of the wiki is to make editing text easier and encourage people to contribute and
annotate text content for a project. The wiki itself does not enforce any structure, but rather
resembles a stack of empty sheets of paper, where you can organize information and
documentation as you see fit, and later reorganize if necessary.

Acknowledgement
We thank all our colleagues from the LINC-NIRVANA Team
and all other projects for there feedback using the software,
our system group for setting up the web server and
especially the Trac team and the Trac Hackers for there
wonderful peace of software released as Open Source, freely
available to everyone - long live the freedom of choice!

Before releasing a new version of the software several steps have
been introduced to improve release quality.

Nightly Build
Every night from Monday to Thursday is the software merged from the unstable
branch into the testing branch and afterwards compiled and tested on various
OSs with different versions and 32/64Bit processors using xen virtual machines.

Weekend Build
Over the weekend is the big build,
meaning all the virtual machines are
reset to the basic installation and
RPM and Debian packages are built,
ready for distribution with a package
repository.

Build System

Historically, developers used build automation to call compilers and linkers
from inside a build script versus attempting to make the compiler calls from
the command line. It is simple to use the command line to pass a single
source module to a compiler and then to a linker to create the final
deployable object. However, when attempting to compile and link hundrets
source code modules, in a particular order, using the command line process
is not a reasonable solution. GNU Autoools[1] and our friend neubau offer a
better alternative.

Autotools - the GNU build system, is a suite of programming tools
produced by the GNU project. These tools are designed to assist in making
various source code packages portable to many Unix-like systems and also
Windows. It also supports automated testing with simple test programs or
unit tests, installing & deinstalling, creating distribution packages.

Neubau - is a small utility to create complete autotools projects, with ready
to use autoconf configuration scripts and automake build rules for various
libraries, e.g. Nokia's QT widget, ZeroC's Ice and building RPM & debian
packages.

Revision control

Subversion - our revision control system for the management of changes to
documents, programs, and other information stored as computer files. It is most
commonly used in software development, where a team of people may be
changing the same files.

Trac Browser - the repository browser can be used to browse specific revisions of
directories and files stored in the repository of the configured version control
system. The browser can be used to navigate through the directory structure by
clicking on the directory names. Clicking on a file name will show the contents of
the file. Clicking on the revision number of a file or directory will take you to the
TracRevisionLog for that file.
If you're using a Javascript enabled browser, you'll be able to expand and collapse
folders in-place by clicking on the arrow head at the right side of a folder.
It also supports inspecting changes between different revisions with just two
simple clicks.

The traditional way of user feedback is to receive an email, reply
to it, and reply again. At one point you have a lot of emails
spreading to various people and more and more issues with even
more emails. Or even worse user feed
back by oral agreement. This leeds to
misunderstandings and most of the issues
will be forgotten anyway after awhile.
Best practice whould be, that users write
tickets:

• All the issues are in a central place.
• Users are notified about the status of
the issue.
• Screenshots or other attachments can
be added to the ticket.
• Developers and Users can reply to
tickets.
• All the tickets can be formated same as
wiki pages.
• Tickets cannot be deleted, only closed.

Trac Tickets - The ticket database provides simple but effective tracking of issues and bugs within a project. As

the central project management element of Trac, tickets are used for project tasks, feature requests, bug reports

and software support issues.

Trac Roadmap - a view on the ticket system that helps planning and managing the future development of a

project.

Trac Reports - provides a simple, yet powerful reporting facility to present information about tickets in the Trac

database. Rather than have its own report definition format, TracReports relies on standard SQL SELECT

statements for custom report definition.

Trac Gantt Plugin - is very easy to use

reporting tool for assigning time spans for

completion of tickets.

Trac Blog Plugin - is a blogging system for

Trac, neat thing for writing weekly reports or

meetings summarisation.

