Figure 1a and 1b show specific observing modes for two different instruments. These ETC forms are intentionally separated into 6 well defihed sections to allow HST observers and STScl instrument sci-
entist to easily identify the relevant information that is needed in the calculations. As seen in Figure entist to easily identify the relevant information that is needed in the calculations, As seen in Figure
1a-b, the same structure is maintained for all the ETC modes and instruments, making easier for HST 1a-b, the same structure is maintained for all the ETC modes and instruments, making easier for HST
users to plan observations for different HST instruments. In terms of the management of the software it helps to track changes that are instrument dependent to those that aftect all the instruments. For example, options available under 2, ,., 4. , and 5 . are shared by
and 6 . depend on the instrument in use and type of observation.

Although the exposure parameters (selection 2.) seem to be identical for all the instryments, the underlying calculations might vary slightly depending on the instrument, observing mode and sometime detector. The ETC handles these differences by subdividing the calculations in stages, making it easier to integrate these into the pasic equations.
The ETC relies heavily on the Synthetic Photometry software package, pysynphot. Pysynphot is par of the Space Telescope Science Data Analysis System (STSDAS) and is developed and maintained by the Science Software Branch (SSB) at STScl. This package performs simulated photometry by com-
puting the detected photons as a function of wavelength (and for spectrographs, detector bin) using puting the detected photons as a function of wavelength (and for spectrographs, detector bin) using a
specified input spectrum and known throughput and detector quantum efficiency curves. The results are used by the ETC to compute exposure times and signal-to-noise ratios. Its predictions made by the pysynphot software rely on the throughput information for all the optical components of the intre pysynphot sofware rely on the throughput information for ail the optical components of the in-
struments that are part of the Calibration Database System (CDBS) at STScl. This database contains struments that are part of he Cailibration Database System (CUBS) at STScl. This database contains thermal response of the infrared detector and a large number of available source spectra (HST Calibration tables, Catalogs, and Models). Figure 2 shows the flow of data between the Web interface, ETC and pysynphot. First the user inputs the observational parameters into the ETC web server. Th Earameters are then formatted by the ETC in a pysynnphot request and submitted to the pysynphot parameetrs are then formatiec by the EyC in a pysynphot request and submitted to the pysynphot
package. The quantities calculated by pysynphot are the imaging and spectroscopic countrate, the package. The quanitie calculatec by pysynphot are the imaging and spectroscopic countrate, the
thermal countrate for the IR detectors and the effective wavelength of an observation. The pysynphot response is retrieved by the ETC application and the count rate used for the calculation of the S / N and exposure time.

 for future reference. For example, to recall previous calculation results or to plot or show a table of the input spectrum, instrument throughput, or detected counts or signal-to-noise as a function of wavelength. An example of
the outpuf of a run for an ACS observing configuration as well as that for a COS spectroscopic observation is given in Figure 3a and 3b, respectively. The-ETC output gives detailed information on the counts rates that are due to strument, as well as other relevant information to the instrument and mode used. The output information is separated in sections which are common to a
the instruments and modes. However, detailed information and instrume configuration information will change from instrument to instrument and als with detectors.

Other capabilities of the ETCs are:

option for user-supplied input spectra
calculation of optimal S / N as would be obtained by PSF fitting - inclusion of instrument-specific effects. For example, NICMOS spectroscopy simulations include
verification that us
bright-limit checks

Support for new instruments

The last HST Servicing Mission added two new instruments: Wide Field Camera 3 (WFC3) and Cosmic Origins Spectrogaph (COS). Adding support for WFC3 was relatively strightforward since the similarities between the two channels covered by WFC3 detectors with ACS (for the UV) and NICMOS (for the IR) made it possible to implement support for the WFC3 modes with few
changes. The main differences between these ETC are the instrument spechanges. The main differences between these ETC are the instrument specific parameters. Other differences have to do with the extraction box size and
shape, and the way in with the size of the extraction box and size are indishape,
cated.

The design of the COS detectors, on the ther hand, possed significan challenges for the ETC developers. The FUV channel is a photon counter with 2 tween. The NUV channel creates a three spectrum stripes for the science data with a gap of 3.70 mm between them. Because of this the ETC needed also to provide with:

- the count rate and global count rate that accounts for the sensitivity of the segments or stripes and the gap between them
- validate the input wavelength for the grating-central wavelength combina-
tion tion
-specify the global and maximum local count rates on each channel
Since the FUV channel is regularly used in time tag mode the ETC also estimates the buffer time. Furthermore, due to the vulnerability of photo multiplier detectors to damage, the ETC needs to calculate various total count rates for
segments and stripes and the corresponding maximum observed count rates within the segments or stripes, and appropriate buffer time values. When these exceed or are close to exceed global or local limits for the detectors, these are clearly flagged by the software as shown in Figure 3b.

Figure 3a. Output for WFC3 Imaging ETC Figure 3b. Output for COS Spectroscopic modes

- Streamining the code and data that has been built up organically over many years and instr-
- Permitting better integration with many of the new STScl science software tools that are being written in Python, for example, pysynphot, a Python re-implementation of SYNPHOT.
- Making some of the underlying components for the ETC available for other science purposesthat would be distributed as part of STScl science calibration and analysis software, for example, background models and signal-to-noise calculations. The ETC computational engine will eventually be distributed with the rest of the science software
- Anticipating JWST ETC development needs.

The re-implementation will also make possible some other capabilities not yet possible, such as scripting ETCs from Python for batch use and perhaps drive the web version of the ETC from a Python script running on a user's computer

The new ETCs will retain much of the same web user interface as the existing ETCs so users should not find much difference in how they use the ETCs. The ability to recall past calculations should not find much difference in how they use the ETCs. The have access to the tabular results will remain.

