The construction of the Large Quasar Astrometric Catalogue (LQAC)

Observatoire

Barache, C.1, Bouquillon, S.1, Souchay, J.1, Andrei, A. H.2, Taris, F.1, Gontier, A.-M.1, Lambert, S.B.1, Arias, E. F.3 and Le Poncin-Lafitte, C.1

1 Observatoire de Paris, SYRTE, France, 2 Observatorio Nacional and Observatorio do Valongo, MCT/UFRJ, Rio de Janeiro, Brasil, 3 Bureau International des Poids et Mesures, Syrte, France

We gather the 12 largest quasar catalogues (4 from radio interferometry programs, 8 from optical survey) and we carry out systematic crossidentifications of the objects to obtain their best position estimates, and to provide physical information at both optical and radio wavelengths. This catalogue compilation designated the LQAC (Large Quasar Astrometric Catalogue), gives equatorial coordinates of 113666 quasars with magnitudes at 9 bandwidths, 5 radio fluxes, redshift and absolute magnitude (when the information is available). We made use of VO tools like Aladin for preliminary studies. For cross idenfication, data processing and validation, we made use of two different software packages with the same parameters and strategy : VO Topcat with Stilts and homemade Fortran programs. .

Scientific and technical obje

The main scientific objective was to build an astrometric and multi-wavelength- catalogue gathering all known QSO's named Large Quasar Astrometric Catalogue (LQAC). This catalogue was also useful to help for the construction of the optical catalogue reference frame (LORF- A, Andrei et al., 2009), to complete optical data for radio sources from the International Celestial Reference Frame (ICRF2-.Gontier et al, 2009) and for the preparation of an input QSO catalogue for GAIA mission. The creation of this catalogue was also interesting for studies like the link between QSO's radio position and optical positions, the analysis of QSO neighbourhood, their distribution in space and their color magnitude diagrams.

The main technical objective was to compile the largest QSO catalogues following the astrometric precision of each catalogue in decreasing order. For each QSO, its original catalogue was kept and a specific processing was done to detect the right or wrong double identifications. To our compiled set of catalogues we added only QSO from Veron and Veron (2006) catalogue which were not identified. We added also magnitude from large star survey catalogues (2mas, GSC2.3, B1.0) to complete magnitude information whenever it was necessary. To control our procedures we worked with two differents softwares (home Fortran programs and virtual observatory tools) and two differents teams working on the same original catalogues taken one by one and with the same compilation strategy

Table 7. Contribution per item for each individual catalogue used to construct the LQAC

Tota	L	K	J	I	H	G	F	Ε	D	C	В	A	
96 343	0	0	0	570	0	0	20 912	74 861	0	0	0	0	¥
96 25	2 131	69 355	0	836	0	966	22 965	0	0	0	0	0	b
48 460	0	41 517	0	6 949	0	0	0	0	0	0	0	0	y
74 863	0	0	0	0	0	0	0	74 862	0	0	0	0	g
99 53	455	3 502	0	0	0	413	20 305	74 861	0	0	0	0	7
86 143	3 765	7517	0	0	0	0	0	74 861	0	0	0	0	i
74 863	0	0	0	0	0	0	0	74 861	0	0	0	0	2
13 64	0	0	13 647	0	0	0	0	0	0	0	0	0	J
13 64	0	0	13 647	0	0	0	0	0	0	0	0	0	K
1811	0	0	0	0	144	937	0	0	0	730	0	0	1.4 GHz
3 23	0	0	0	0	0	0	0	0	0	0	3 234	0	23 GHz
862	0	0	0	0	41	0	0	0	0	821	0	0	5.0 GHz
3 858	0	0	0	0	17	0	0	0	570	46	3 225	0	8.4 GHz
6	0	0	0	0	0	0	0	0	0	61	0	0	24 GHz
101 535	0	0	0	5344	0	413	20 912	74 866	0	0	0	0	redshift

Table 1. Characteristics of the catalogues participating to the LQAC

Catalogue	Flag	Wavelength	No. quasars	Accuracy "	Search radius "
ICRF-Ext2	A	radio	717	0.001	1
VLBA	В	radio	3 357	0.001	1
VLA-015	C	radio	1 701	0.015	1
JVAS	D	radio	2 118	0.2	1
SDSS	E	optical	74 868	0.2	1
2QZ	F	optical	22 971	0.2	1
FIRST	G	radio	969	0.5	2
VLA+015	H	radio	157	0.2	2
HB	I	optical+radio	7 245	1.5	2-5-30
2MASS	J	infrared	-	0.2	1
GSC2.3	K	optical	-	0.2	1
B1.0	L	optical	-	0.2	1
VV06	M	optical+radio	85 189	1.0	2-5-10

Our complete LQAC xml	

using table data view

Openit	arka Modulati												- 57	į
		STORE											177	•
in later														
A 27	EX													
	TALL													
Talk free	ie le 1 lei	CARLES	III. WILL	C. L. Mindred	ried .									
	,With	Jen		10	3114	ing	.796	Deal	794	J. Prog.	Des.	.7%	11964	
-	5	1198				100	1	-		2	1.5	N.		
	1,031					15,76			8.3	3,39				
-		-6.890		7	32.81	5,5	1.5		8.1	1.5	10	-		
1		3.00				Post.	1	1	100	5	1	-		
-11	- Dis-	15,000				12		1	12-		+1	1		
-	1,7127			4	0.51	8.67	16	15	20.00	15.59	-			
-	1,790	D.764	155	NA.	0.67	153	9,67	19245	16,89	18,37%	16,00	+2		
	1,1389	0.684		_	0,005		0.0	H.MM	E4N	0.79	(8,182	12	12-	
	-200	11.74		-			1000		100					
-41	8.1780	40.680			24,243	841	28.87	2.57	8.67	2,/50	2,50	1		
-251	CM07	:KDw/		4.5	35.66		X	E.	79/05	28.7	12	12.	12	
	8,7607	0.099		0.5	75,819	20.48	N.		8.77	38.1	1.6	8.		
	CHE								8,11	26.3				
	CHES	-0.8FLI	-	4.	25.11		8.	5.	18.81	No.	10	A.		
	4,5475	9,556		4	16,681	THO	(5.43)	35,40%	TROSE.	15.198	36,591	10.		
	4,5488	15,640			15,89	15.39		10.	50,30		1.4	1.		
-40	Cide	1,044		Q	0.761			25,899	185/00	11,808	17,44	8,451	JAA6.	
	CSFS	SCD9	100		33.37	BUH	93.07	3630	34,48	25,548	55,781	1		
	50%				1.0.	154	5.	Jan.			1.5			
	6,967	- Acces			2.88	8.39		-						
-44	5,665	4.48E		¥	1,40	2.75	A	1.Down	8.47		200	N	45	
	USK.	0.761	1000	10	30,301	18.8	881	DOM	N. W.	N.SE				
21	4,94	0.76%				De-	100		200	17.04	15	1		
	5,000	-0.89	-						107	10.00				
-11	1.79	7.74				10.	1	5	17	2		-		
21	Car	3,104			+2-	172	+2	+2-			+2			
191	1.987	11,1901		4	11,389	100	16.0	8.361	0.03	18.769	8,11	1		
1		100	the state of		35,63	10.00	16					16,304	1848	
- 11	1,507	400			9.8	1 EO	18	1.0		100	12	1200	12	
	A-NE	-0.349			7.4	1.5	16	5	12	1	16	1		
- 11			-	42	0.13	8.50			35.28	10.48		16		
	4.599	0.5%			20,000	18.3	0.00	30%	3.04	31,185	18,486	1		
	4,1700	IKARE.	154	18	35,4%	110.40	33,31	15,964	18000	0.00	9,10	N		
	4,1228	At Alle	-	4.6	31,65	31,8%		1			1.6			
11	1.112	-0.328						1						
11	AU30E	ALK.			3545	109		- N	16,88	15	1.15	N		
461	4,1865	-JLATE	-	50	31.66	10.00		-	5.0					
									-					
CON.	. 1	2114	head	e Drugted	AFWZ	TOPCE	7		TOPCA	TED Tubb	Dresser		100	ı

Conclusion

We are now preparing a new version of LQAC (LQAC2.0) to improve the catalogue. We will resolve the wrong double qso (300 pair of QSO's are in LQAC, their double status being doubtful). We will add some picture associated to each QSO and we will improve the homogeneity of magnitudes.. We will also add a criterion of source geometry (for instance near star form than galaxy form). The VO tools used for the LQAC were useful to get and to study catalogues (Aladin, VizieR), to make crossmatching of sources (Topcat) and to manage, distribute the LQAC file catalogue easily (Topcat). However, these tools are a little limited for instance to get the data from very large catalogues, to make some complex cross-matching. Moreover we have found difficulties to get the magnitude system photometric used in the magnitude of sources in VO tables.

LQAC Catalog

The final catalogue LOAC was constructed with the compilation of 12 large OSO catalogues (optical and radio) and includes 113666 quasars, 5 radio fluxes (1.4Ghz, 2.3Ghz, 5.0Ghz, 8.4Ghz, 24Ghz), 7 photometric magnitude visible (u, b, v, g, r, i, z), 2 infrared magnitude (j, k) and the redshift value. The accuracy of the QSO sources was at the level of the milliarcsecond for sources from ICRF and not worse than 2 arc seconds for sources from Hewitt and Burbidge catalogue and Veron and Veron catalogue. The name of the catalogues and their contents are presented in Tables 1 and 2. After the construction of this catalogue, we have written an article on it in Astronomy and Astrophysics which has been published this year (Souchay, et al. 2009, A&A 494, 799-815).

> The LQAC xml file visualised by Vizier CDS Web service

References

Souchay, et al.2009, A&A 494, 799-815 Veron-Cetty,M.-P.,&Veron,P.2006,A&A,455,773 Lambert, S. B.; Gontier, A.-M. 2009, A&A 493,

A. H. Andrei et al. A&A 2009 in press

ectives for LQAC	VO Tools used for LQAC Construction

The Virtual Observatory Tools used to construct the LQAC were Aladin freeware from CDS (http://aladin.u-strasbg.fr/aladin) to visualize the catalogues origin. We used VizieR tools from CDS (http://vizier.u-strasbg.fr/viz-bin/VizieR) to get the differents catalogue files. At last we used Topcat and Stilts (http://www.starlinl.ac.uk/stiltsandhttp:/www.star.bris.ac.uk/mbt/topcat) to make cross matching and to construct the LQAC Data Base. The LQAC is now accessible on the CDS web with the reference J/A+A/494/799 in VizieR web service.

The LQAC vizualised by Aladin and Topcat VO tools