# Centroiding experiment for determining the positions of stars with high precision

#### **ADASS2009 Sapporo**

**October 7, 2009 Renaissance Sapporo Hotel Sapporo, Japan** 

Taihei Yano, Hiroshi Araki, Hideo Hanada, Seiichi Tazawa, Naoteru Gouda, Yukiyasu Kobayashi (NAOJ), Yoshiyuki Yamada (Kyoto Univ.), Yoshito Niwa (Kyoto Univ./NAOJ), JASMINE-WG

### **Table of Contents**

1. Introduction

Infrared Astrometry Satellite (JASMINE project)

2. Centroiding Experiment

Algorithm

Result

3. Summary

## Introduction

- JASMINE project
- Japan Astrometry Satellite Mission for INfrared Exploration-
- Infrared Astrometry Satellite
- •Mainly in progress at the National Astronomical Observatory of Japan

The objective

investigate the bulge components of the Milky Way galaxy



#### Introduction

In order to accomplish these objectives,

• JASMINE will measure positions, proper motions, and the annual parallaxes of bulge stars with the precision of 10µas.

(10µas is needed for determining the distance of bulge stars.)



#### Introduction

Specifications

|             | Small-JASMINE | JASMINE |
|-------------|---------------|---------|
| Aperture    | 30cm          | 80cm    |
| Wavelength  | 2micron       | 2micron |
| Planned     | ~ 2015        | 2020s   |
| Launch date |               |         |



#### **Observational Method**

- JASMINE will observe the bulge stars in the following procedure.
- We take star image and measure the positions of stars with the precision of about 10<sup>-2</sup> pixel for one exposure.
- We continue to take many images during the mission time and estimate the positions of stars with the precision of about 10 microarcsec, that is, of about 10<sup>-4</sup> pixel for all the observations.







# To the 10 microarcsec in the experiment

In the experiment we must show the following two points.

- the positional error is about 10<sup>-2</sup> pixel for one exposure.
- the position of a star is estimated with a precision of about 10<sup>-4</sup> pixel for all the observations.
- If we can remove or estimate the systematic error adequately, the error of the position decreases as the random error.



#### Experiment 1

- Determination of the position with a precision of about 10<sup>-2</sup> pixel for one exposure
- 2. Determination of the position with a precision of about 10<sup>-4</sup> pixel using about 10<sup>4</sup> images

#### Determination of the position

It is difficult to determine the position of stars with high accuracy.

- If we substitute photon-weighted mean for the position of a star, we obtain the position with a precision of a few tenth of pixels.
- •However it is difficult to estimate the position with a precision of about 10<sup>-2</sup> pixel level.
  - So we need some idea to estimate the accurate position.

photon-weighted mean : positional mean using the number of photons

## Algorithm

We need to estimate a center of a star image

On the other hand, it is easy to calculate photon-weighted mean.

So, we estimate a center of star from the photon-weighted mean Note) Photon weighted mean of a star is different from the center of the star.



### Algorithm

**Procedure** 

1. Select two stars to measure the distance

2. Pick up a square subset of 5x5 pixels around the peak pixel of each star image

peak pixel : the pixel in which the number of photons is maximum **3. Calculate the photon-weighted mean of each star (xc, yc)** 

4. Assume that the difference between the photon-weighted mean and the real position is proportional to the deviation of the photon-weighted mean from the center of the pixel

#### **xa - xc = k xc** (Linear correction)

xc: photon weighted mean

xa: real position of a star

5. Estimate the parameter k from the several images using the least square method

#### **Experimental Equipment**



#### Result 1



Distance between the photon-weighted mean of two stars Estimated distance between two stars (linear Correction)

We obtained the variance of less than 10<sup>-2</sup>pixel for one exposure.

## Experiment 2

- Determination of the position with a precision of about 10<sup>-2</sup> pixel for one exposure
- Determination of the position with a precision of about 10<sup>-4</sup> pixel using about 10<sup>4</sup> images

#### To the 10 microarcsec

- We would like to determine a position of a star with a precision of about 10<sup>-4</sup> pixel using about 10<sup>4</sup> images.
- However if there exist systematic error which we do not realize, variance does not decrease according to 1/ N.
- We must remove the systematic errors using a model or control them so that we can neglect them.
- In our experiment, we control the systematic errors.

control: ex. chromaticity effect we use same colors for all stars

#### Method

•Obtain many images (In this case, 8000 images)

• Calculate the mean distance and variance from one set of 10 images.

·Calculate the mean distance and variance from one set of the above 10 values





- variances decrease according to the slope in the case of random error.
- We do not find a systematic error which we do not realize.

## Summary and the Future plan

#### Summary

- We obtained the precision of less than 10<sup>-2</sup>pixel for one measurement.
- positional error decrease according to the slope in the case of random error (1/  $\,$  N).

#### **Future plan**

- We will obtain much more data to improve the statistical errors.
- We will remove the systematic errors, such as the distortion of the image, chromaticity effect, irregularity of pixels using a model.
- We will experiment using a different algorithm, such as PSF fitting method.