Science and Operations Center for JWST

J Pollizzi, A Krueger, G Green
ADASS 2009

Space Telescope Science Institute
S&OC for the JWST

- Agenda
 - Brief background of the satellite and mission
 - Lessons learned from operating the HST that we plan on applying to JWST
 - Challenges we face in developing the S&OC
The James Webb Space Telescope

Effective Mirror Size: 6.5m; 18 segments
Sunshield Size: 14.6 m x 21.1 m
Payload Weight: 6500 kg (estimated)
Cold Side Operating Temp: -233C
Hot Side Operating Temp: +85C
Planned Consumables Lifetime: 10 years
JWST Teams and Responsibilities

Integrated Science Instrument Module (ISIM) – GSFC
- Structure – GSFC/ATK
- MIRI – JPL & ESA/European Consortium
- NIRSpec – ESA/Astrium
- NIRCam – U of Arizona/LMATC
- FGS/TFI – CSA/COM DEV

Optical Telescope Element (OTE) – NGST/Ball

Backplane Structure – NGST/ATK

ISIM Radiators – NGST/Ball

ISIM Electronics Compartment (IEC) – GSFC

Deployment Tower – NGST

Launch Vehicle & Adapter – ESA/Arianespace

Spacecraft – NGST

MIRI Cryocooler – JPL/NGST

Membrane – NGST/SRS

Overall Observatory – NGST

Instrument C&DH – GSFC

Sunshield – NGST

5-Oct-09 ADASS-2009
JWST Science Instruments
JWST Instruments

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Science Goal</th>
<th>Key Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIRCam Univ. Az</td>
<td>Wide field, deep imaging</td>
<td>Two 2.2’ x 2.2’ SW</td>
</tr>
<tr>
<td></td>
<td>‣ 0.6 μm - 2.3 μm (SW)</td>
<td>Two 2.2’ x 2.2’ LW</td>
</tr>
<tr>
<td></td>
<td>‣ 2.4 μm - 5.0 μm (LW)</td>
<td></td>
</tr>
<tr>
<td>NIRSpec ESA</td>
<td>Multi-object spectroscopy</td>
<td>9.7 Sq arcmin Ω</td>
</tr>
<tr>
<td></td>
<td>‣ 0.6 μm - 5.0 μm</td>
<td>100 selectable targets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R=100, 1000</td>
</tr>
<tr>
<td>MIRI ESA/JPL</td>
<td>Mid-infrared imaging</td>
<td>1.9’ x1.4’</td>
</tr>
<tr>
<td></td>
<td>‣ 5 μm - 27 μm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mid-infrared spectroscopy</td>
<td>3.7”x3.7” - 7.1”x7.7”</td>
</tr>
<tr>
<td></td>
<td>‣ 4.9 μm - 28.8 μm</td>
<td>R=3000 - 2250</td>
</tr>
<tr>
<td>FGS/TFI CSA</td>
<td>Fine Guidance Sensor</td>
<td>Two 2.3’ x 2.3’</td>
</tr>
<tr>
<td></td>
<td>‣ 0.8 μm - 5 μm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tunable Filter Imager</td>
<td>2.2’ x 2.2’</td>
</tr>
<tr>
<td></td>
<td>‣ 1.6 μm - 4.9 μm</td>
<td>R=100</td>
</tr>
</tbody>
</table>
Key Operations Concepts

JMST Observatory
- L2 Orbit - thermal stability, stay light avoidance, stable communications
- Orbit Determination & Maintenance
- Momentum Management
- Event-Driven Operations - efficient and flexible operations
- Parallel SI Calibrations - Darks, Sky Flats
- Wavefront Sensing & Control

JPL Deep Space Network (DSN) Ground Stations
- CFDP File Transfer Protocol
- Ranging
- Alternating hemispheres
- Clock Correlation
- 458 gbits/day over 2x 4 hour passes
- All science and engineering is recorded for downlink
- Eng also downlinked real-time during pass

Goldstone
Madrid
Canberra

JPL Deep Space Network (DSN) - Pasadena CA
- Launch Support
- Commissioning Support - continuous coverage
- Normal Operations Support - 4 hour contact / day

NASA Integrated Services Network (NISN) - MSFC - Huntsville AL
- Ground Network & Voice Communications

Goddard Space Flight Center (GSFC) - Greenbelt
- Flight Dynamics Facility (FDF)
- Flight Software Maintenance Facility

Space Telescope Science Institute (STScI) - Baltimore
- Science Operations
 - Proposal Selection, Planning & Scheduling
 - Event-Driven Operations
 - Data Archive & Calibration
- Mission Operations
 - Real-Time Operations, Health & Safety Monitoring
 - Anomaly Resolution, Trending Analysis
- Normal Operations 8 x 5
 - Automated Contacts
Science and Operations Center

JPL
Deep Space Network (DSN)

NASA Integrated Services Network (NISN)

GSFC Flight Dynamics Facility (FDF)

STScI Science & Operations Center (S&OC)

Observatory Simulators
(OTB/STS)

Operations Script
Subsystem (OSS)

Flight Operations
Subsystem (FOS)

Project Reference DB
Subsystem (PRDS)

Wavefront Sensing &
Control Exec
(WFSC Exec)

Data Management
Subsystem (DMS)

Proposal Planning
Subsystem (PPS)

Data Products

Proposals

Proposer
Lessons Learned from HST(1/3)

- **Test as you fly**
 - Use every opportunity and system used during I&T to work out flight operations concepts and approaches
 - Use testing as training events for eventual flight staff

- **Take best of legacy systems – but not without true competitive analysis – and certainly not with any leftover baggage**
 - E.g. keeping APT, SPIKE and some GSS – but not rest of planning
 - Likewise will use MAST, and our Storage Architecture (NSA), but not DADS and likely not OPUS

- **Use an iterative design approach – but do a good requirements analysis upfront**
 - The requirements gives both a list of what needs to be done as well as can drive the testing
Lessons Learned from HST$^{(2/3)}$

- Have a uniform mechanism for users to interact with Institute regardless of mission
 - Using APT as “the” proposal entry tool for both HST and JWST
 - Using MAST as the “front door” to the archive for all mission data held by STScI
 - Will use GMS as a consistent means for working with Grant submissions and reporting across missions
Example JWST APT Input
Lessons Learned from HST\(^{(3/3)}\)

- Maximize efficiency by having onboard event driven operations
 - HST uses only absolute timing actions. Loses opportunities for more exposure time due to incurred overheads (i.e. waiting a fixed amount of time for a mechanism to move)
 - JWST uses event driven actions – i.e. can proceed with next step once a mechanism has reported motion completion
 - Event concept applies to visits as well. A succeeding visit can start as soon as its earlier visit successfully completes or fails (within some no-earlier-than constraints)
 - i.e. should a guide star acquisition fail, then that visit is canceled and the succeeding one can start. The science program can continue even in the wake of failed visits
Challenges

- Funding for Ground Segment components delayed
 - Defers startup of key aspects to ground system to different times
 - Impinges on “Test as you fly” since the software is not ready when the hardware is
 - And defers integration problems effectively till last major system comes online (will be years after the first system is ready)
 - Will have to rely more on intra-subsystem simulators/stubs to check out components
Challenges (2/5)

- **Complexity of the Instruments and nature of the data**
 - NIRSpec has a micro shutter array of 798 x 350 shutters (detector is 2 arrays of 2k x 2k); NIRCAM has 10 sensor arrays, each 2k x 2k
 - Data is downlinked as a cube holding successive read-outs as the sensors accumulate charge
 - Early indications imply a persistence effect on the detectors
 - Will require new approaches to doing the calibration pipelines

- **Environment of the satellite**
 - Solar wind applies a torque to the spacecraft
 - Momentum management requires an ongoing and active response
 - Factored into both the planning systems and onboard scripting system
 - Is complicated by the event driven nature of the visits
 - An autonomous system will issue a burn to unload momentum if not otherwise reduced
NIRSpec Micro Shutter Array
Challenges(3/5)

- Nature of the data taken
 - As planned design factored in a 2:1 compression of science data for recording and downlink
 - Realized nature of the data did not lend itself to suitable compression strategies
 - Initial response was/is to double the number of contacts/day; Was originally 1x 4 hour pass – now 2x
 - Now considering compressing a series of delta images (readouts) taken against some initial baseline image.
 - Since the delta’s only reflect what’s changed from read-out to read-out – they are much more suitable to compression approaches
Challenges (4/5)

- Dealing with the obsolescence of planned legacy systems
 - Original plan from 5 years ago cited the usage of then existing systems.
 - In the 5 years since the plan – several of the planned systems are no longer sustainable for another 5 – 15 years for JWST
 - OPUS, ETCs, use of the Sunfire/Symetrix, MOSS, use of Sybase, STSDAS/IRAF
 - Hardware-wise JWST is basing its architecture on new standard configurations
 - All servers 64-bit Intel based; most using RHEL5; Databases using MS SQL Server
Challenges (5/5)

- Dealing with the obsolescence (continued)
 - Some systems can be re-implemented using a more sustainable approach
 - MOSS from Fortran to C++; ETCs and necessary STSDAS/IRAF routines being redone in Python
 - Others require trade studies and evaluations of new approaches
 - i.e. considering LSST’s and NOAO’s pipeline systems as replacements for OPUS
Summary

- Use of Legacy systems is beneficial to a new project, but …
 - Beware not to freely adopt all aspects of the legacy components
 - Use only what works for the new mission
 - Recognize the lifetime potential of the legacy software/hardware
 - Will it last for the duration of the new mission?

- An iterative development approach works well – but don’t ignore the benefit of having up-front baselined requirements and interface specifications
 - You will always find new functions to incorporate though the development phase – but having a strong base set of requirements up-front will help assure you don’t miss anything on the way
 - Particularly useful if you need to rephase your development efforts

- Whenever possible – Test as you fly
 - Exercise the system in an operational mode up front (during nominal testing) then you’ll be less surprised and better trained when operating for real
JWST Full Scale Model
JWST Links

- STScI page http://webbtelescope.org/webb_telescope/
- ESA page http://www.esa.int/esaSC/120370_index_0_m.html
- U of Arizona page on NIRCAM: http://ircamera.as.arizona.edu/nircam/